16,799 research outputs found

    The dynamic analysis of submerged structures

    Get PDF
    Methods are described by which the dynamic interaction of structures with surrounding fluids can be computed by using finite element techniques. In all cases, the fluid is assumed to behave as an acoustic medium and is initially stationary. Such problems are solved either by explicitly modeling the fluid (using pressure or displacement as the basic fluid unknown) or by using decoupling approximations which take account of the fluid effects without actually modeling the fluid

    A general low frequency acoustic radiation capability for NASTRAN

    Get PDF
    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads

    Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels

    Full text link
    Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the energy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided

    Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter

    Get PDF
    Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic network-like structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the {\it single gyroid} network structure of cubic chiral I4123I4_123 symmetry, a well known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.Comment: 7 pages, 4 figure

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Fil: Lange, H.. Technische Universitaet Dresden; AlemaniaFil: Casassa, G.. Centro de Estudios Cientificos; Chile. Universidad de Magallanes; ChileFil: Ivins, E. R.. Institute of Technology. Jet propulsion Laboratory; Estados UnidosFil: Schroeder, L.. Technische Universitaet Dresden; AlemaniaFil: Fritsche, M.. Technische Universitaet Dresden; AlemaniaFil: Richter, Andreas Jorg. Technische Universitaet Dresden; Alemania. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Astrometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Groh, A.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani

    Fractional Fokker-Planck Equation for Fractal Media

    Full text link
    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space.Comment: 17 page

    Relativistic spherical plasma waves

    Full text link
    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.Comment: 6 pages; 4 figure

    Peak Power Changes During a Countermovement Jump Following Treadmill and Cycling High-Intensity Interval Training

    Get PDF
    Within activities involving jumping, peak power can be a significant factor to consider when assessing an athlete’s overall physical performance. By investigating different modalities of exercise, it is possible to discover potential benefits or flaws in certain workout regimens that may influence jump performance. In turn, this could influence how physical trainers, athletes, and recreationally active people approach their exercise routine to maximize performance. PURPOSE: The purpose of this study was to investigate the changes in peak jump power during a countermovement jump (CMJ) immediately following and 1-hour post high-intensity interval training (HIIT) using high-impact (running) and low-impact (cycling) exercise modalities. METHODS: Eleven young, recreationally active volunteers (5 female, 6 males; 27.20 ± 3.42 years) completed a 4x4 HIIT protocol (4-minute 85-95% HRmax active; 3-minute 60-70% HRmax recovery) on a treadmill (TM) and a stationary cycle (CE) in a randomized order 1 week apart. Peak power during the concentric portion of a countermovement jump (CMJ) was measured using VALD ForceDecks platforms. Data are presented as percent change. RESULTS: The TM peak power increased by 7.3% immediately following the HIIT protocol and decreased by 8.5% 1 hour following to below baseline vales. The CE peak power increased by 5.7% immediately following and decreased by 7.5% 1 hour following to below baseline values. CONCLUSION: Based on these findings, the modalities had similar responses for peak power, with both revealing a notable increase immediately post-exercise. This suggests that the exercises may have primed the muscles for CMJ performance. Yet, after recovering for 1 hour, the peak power decreased in both modalities to below baseline values. These patterns in peak power during different periods post-exercise can inform coaches and trainers on how to approach warm-up routines before engaging in physical activity or competition
    • …
    corecore